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PSYCHOLOGY OF LEARNING, 1960-1980: ONE PARTICIPANT'S OBSERVATIONS

James G. Greeno
University of Pittsburgh

Abstract

By 1960 there was a strongly developed theory of learning in which

learning was considered as change of behavior. Nfeobehaviorist theories

and then formal stochastic models analyzed processes in which probabilities

of responses are altered. In the 1960's we began to analyze learning as

discrete change between states of knowledge or stages of processing that

* differ in qualitative characteristics; stochastic models were used to

represent these states and stages. In addition, the processes and struc-

ture of human memory were studied in detail. In the 1970's we have de-

veloped detailed analyses of the organization of knowledge for under-

standing language and solving problems, using programming languages as

formalisms for representing models that simulate human performance. A

prospect for the 1980's is the analysis of learning considered as acquisi-

tion of knowledge, in which basic processes will involve modification and

combination of cognitive structures; this development is likely to include*1 and profit from analyses of learning tasks used in school instruction.



PSYCHOLOGY OF LEARN~ING, 1960-1980: ONE PARTICIPANT'S OBSERVATIONS

James G. Greeno
University of Pittsburgh

This paper presents my personal view of some recent history. It

reflects my feelings of both nostalgia and optimism. I am nostalgic both

* about the state of the psychology of learning in the late 1950's and

about the progress that I believe has been made in the field during the

* 20 years that have intervened. I am also optimistic that we now have

the capability of developing a fundamentally new conception of the nature

of learning, and that this, together with the accomplishments that are

already in place, will constitute a contribution to human thought and

culture of the strongest kind.

I will trace one sequence of recent developments in the psychology

of learning and cognitive processes. This is not a complete, or even a

balanced, view of the important events in the psychology of learning

* during the past two decades. The achievements that I consider here have

formed one significant strand in the web of psychology's development

during this period. This strand has two main threads: one mainly

methodological, the other substantive. The methodological thread in-

volves formal methods that have been adopted and developed by psycholo-

gists. These methods have permitted more precise statements of psycho-

logical hypotheses and more rigorous derivations of their implications.

The substantive thread has been the development of more differentiated

concepts and detailed characterizations of psychological processes and

structures.
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I will begin with a brief sketch of the developments that I will

consider. In the 1950's, we had a fairly complete formal analysis of

learning considered as change in the probabilities of responses. The

main concepts of this analysis were worked out by neobehaviorists, with

Hull's theory being the most rigorous version. In analyses developed

during the 1950's formulas describing change in response probability

are derived from stochastic models of the learning process.

In the 1960's, structural models of learning and memory were for-

;mulated using the theory of finite stochastic processes. This formalism

provides a natural representation of transitions between discrete states

of knowledge or stages of processing differing in qualitative charac-

teristics.

A development that has occurred primarily in the 1970's is the

*analysis of the detailed structure of knowledge using formalisms con-

sisting of computer programming languages. These models provide specific

hypotheses about the cognitive processes and structures involved in solv-

ing problems and understanding language.

An important prospect for the 1980's is the development of a theory

of learning involving detailed analysis of the acquisition of knowledge

structures such as those that are required for understanding language

and solving problems. This will provide understanding of learning as

a process of modifying and combining cognitive structures, and will be

applicable to the analysis of processes by which children acquire knowl-

edge and skill in school instruction. In fact, I believe that theoretical

analyses of learning tasks given to children in schools will be particularly

useful for development of general theoretical concepts about the acquisition

of knowledge.
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The remainder of this paper presents brief personal comments on each

of the three main developments that I have mentioned: neobehaviorist

theory and analysis of response probability, discrete models of quali-

tative changes in knowledge and stages of processing, and programmed

simulations of the detailed structure of knowledge and cognitive pro-

cesses. Finally, I will comment on the prospect, as I see it, for

developing significant new understanding of learning during the next

few years.

Learning as Change in Behavior

Neobehaviorist theories. I became a participant in the psychology

of learning in the late 1950's, when the issues that dominated investi-

gations of learning were those generated by the theories of Guthrie

(1935), Hull (1943), Skinner (1938), Spence (1956), and Tolman (1932).

The questions that we hoped to answer, or at least to understand better,

included the following: Can learning occur simply because of contiguity

between stimuli and responses, or is reinforcement required? Do animals

learn the location where food has been found, or do they simply learn

to respond in ways that have been followed by food reinforcement? Does

experience in an environment produce latent learning--that is, knowledge

that is not seen in performance until incentives are changed to influence

*1 performance? If withholding reinforcement is the cause of response ex-

tinction, then how can we understand greater resistance to extinction

following training with partial reinforcement? There were many other

similar questions, of course.

It seems fashionable among cognitive psychologists now to regret

the extent to which the psychological study of learning was dominated
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by behavioristic ideas from the 1930's through the 1950's. In my admit-

tedly nostalgic judgment, this regret overlooks achievements of great

importance. Two important properties of scientific knowledge about a

phenomenon are an explication of the processes that produce the phe-

nomenon and an ability to relate hypotheses about the underlying

hypotheses to data in an unambiguous way. As a result of neobehaviorist

theorizing, these properties become established as attainable features

of the analysis of active mental processes.

The neobehaviorists were not the first to develop psychological

analyses with these characteristics. In particular, sensory processes

were understood in terms of their neuroanatomical components, and psycho-

physics was an impressively formal enterprise. However, the psychological

processes studied in sensation and psychophysics were understood as sub-

stantially receptive and passive in nature. Neobehaviorists took up

the analysis of active mental processes, including choice, thought, and

learning, and succeeded in developing plausible analyses of component

subprocesses as well as the beginning of a formal representation of

psychological hypotheses about these responsive psychological processes.

The analysis of component mechanisms in learning had been in progress,

of course. A notable landmark, to use Kimble's (Note 3) felicitous term,

had been the contributions of Ebbinghaus, Pavlov, and Thorndike, in which

phenomena of learning were conceptualized as acquisition of associations,

conditioned reflexes, and stimulus-response bonds. Neobehaviorists de-

veloped these ideas in great detail, especially Pavlov's and Thorndike's,

and related their theoretical concepts and principles to a large and

coherent body of experimental data.



One aspect of the theoretical development of the 1930's and 1940's

was of special substantive importance. This was the detailed theoretical

and empirical analysis of relationships between motivation and experience,

the so-called learning-performance distinction. In its emphasis on

issues such as the incentive value of reinforcing stimuli and the in-

teraction of drive states induced by different kinds of deprivation,

the neobehaviorist theory was as much a theory of motivation and choice

as it was a theory of learning. Hull gave special emphasis to pbysio-

logical deprivations as sources of motivation. Hull's idea, that learn-

ing provided a tendency to repeat actions that had led to reduction of

physiological drives, made learning a critical process in the survival

of individuals and species; indeed, it is as legitimate to classify

Hull as a functionalist as it is to classify him as a behaviorist, as

Kimble (Note 3) has pointed out. This feature of neobehaviorist theory,

clearest in Hull, provided a strong conceptual link between the psy-

chology of learning and biological science. Today, we recognize that

the picture of organisms driven toward homeostasis, choosing responses

that were previously followed by drive-reducing reinforcement, is a

gross oversimplication. However, it was plausible when it was advanced,

and the connection it provided with concepts in the established science

of biology contributed significantly to establishing the psychology of

learning as a legitimate scientific enterprise.

In addition to developing more detailed analyses of component pro-

cesses of learning, neobehaviorists related their theoretical concepts

and principles to empirical data in a systematic and detailed way. Here,

too, Hull provided the strongest version of the neobehaviorist program.

Hull constructed an imposing formalism in which explanations of phenomena
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were presented as chains of deductions involving functional relationships

among hypothetical variables. In retrospect, we realize that Hullian

theory received more points for its formalism than were really merited

by the rigor of the system (cf., Koch, 1954). Nonetheless, the achieve-

ments of the Hullian formalism were a notable advance and established

formal theoretical analysis as a feasible goal in the psychology of

learning.

Stochastic process models. The formal analysis of learning was

continued during the 1950's, notably by Bush and Mosteller (1955),

Estes (1950, 1959), and Luce (1959). Like Hull's, these analyses con-

sidered learning as change in the probabilities of responses; however,

they provided a deeper analysis. The models of learning developed in

the 1950's included assumptions about the quantitative effects of specific

events that occur on trials in a learning experiment. The form of the

learning curve can be derived from these assumptions, and thus becomes

useful as evidence in testing alternative hypotheses. It is historically

interesting that Thurstone (1919, 1930) had proposed such models some-

what earlier, but his theoretical proposals did not lead to substantial

experimental programs or theoretical extensions. The critical difference

might be that in the 1920's, quantitative methods in psychology were

primarily applied to measuremient and scaling, while by the 1950's, pri-

marily because of Hull's work, it was evident that formal theoretical

methods could be used in answering substantive questions about processes

of learning. For whatever reason, the formal theoretical analysis of

learning was an important achievement of the 1940's and 1950's in which

Hull was the major early figure, and by about 1960 a set of theoretical

AAMN.--
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methods and concepts had been developed that provided a basis for an

analysis of psychological processes in learning at a more detailed

level.

Verbal Learning and Stochastic Models

The development of general behavior theory was the major activity

in the psychology of learning in the 1940's and 1950's, but other things

were going on as well. One significant alternative to general behavior

theory was the study of rote verbal learning. The tradition of experi-

mental study of rote learning went back to Ebbinghaus, but most of the

literature on the topic has been produced by American functionalists

such as McGeogh, Postman, and Underwood. The major concepts developed

in this study were concerned with processes of strengthening and weak-

ening of associations, and these were incorporated into a body of

concepts referred to as interference theory. These concepts were

strongly influenced by general behavior theory. Information about the

correct responses in paired-associate memorizing was interpreted as

reinforcement, forgetting in some circumstances was interpreted as ex-

tinction, and transfer of training was interpreted as stimulus and

response generalization (cf., Underwood, 1964). On the other hand, the

principles of verbal learning, transfer and forgetting remained relatively

informal, in contrast to the formalization developed in the Hullian theory

of response conditioning and stochastic models of changes in choice proba-

bilities. Some investigators believed that the processes of verbal

learning were more complex than those of instrumental and classical

conditioning, and therefore more empirical knowledge was needed to

provide a sound basis for formal theory. This view was reinforced
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by an earlier attempt--by Hull, as it happened (Hull, Hovland, Ross,

Hall, Perkins, & Fitch, 1940)--to provide a formal theoretical analysis

of serial verbal learning, and another attempt by Gibson (1940) to

formalize part of the theory of verbal learning involving discrimination

among items. Hull's analysis turned out to be extremely cumbersome,

and Gibson's theory omitted important aspects of the memory process

(Underwood, 1961).

Finite stochastic models of learning. In the 1960's a formalism

was applied to analyze phenomena of verbal learning. The formalism was

the theory of finite stochastic processes. The analyses were a natural

extension of the stochastic models developed in the 1950's and applied

primarily to animal conditioning and to performance by human subjects

in a task initially called verbal conditioning and later referred to

as probability learning (e.g., Estes & Straughan, 1954). However,

beginning with Bower's (1961) analysis of paired-associate memorizing

and Restle's (1962) analysis of simple concept identification, a sub-

stantial body of literature developed involving analyses of the learning

of paired associates (e.g., Polson, Restle, & Polson, 1965), memorizing

lists of items for recognition and free recall (e.g., Kintsch & Morris,

1965), and induction of simple rules for classifying stimuli (e.g.,

Bower & Trabasso, 1964).

1 The important innovative idea in this development was to concep-

tualize learning as discrete change between states of knowledge rather

than as change in probability of response. A major factor in the de-

velopment was that successful analyses were achieved using extremely

simple models.

A
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One finding was that performance of adult human subjects in simple

concept identification is described well by the model pictured in the

Panel A of Figure 1. The task requires a subject to discover a

simple rule for classifying stimuli. On each trial, a stimulus is pre-

sented, the subject gives a category response, and then is told which

category that stimulus belongs to. The model in Panel A was originally

proposed by Restle (1962), who showed that it follows from assuming that

subjects select samples of hypotheses, choose category responses based

on the hypotheses they have on each trial, remove incorrect hypotheses

after each correct response, and resample with replacement after each

error.

Insert Figure 1 about here

The idea of solving concept-identification problems by a process of

active selection and test of hypotheses was not new, of course (Bruner,

Goodnow, & Austin, 1956; Woodworth, 1938). However, the simplicity of

the process as represented by the Markov model was quite surprising.

According to the model in Figure 1, the probability of solving the

problem is a constant, c, that applies each time an error occurs, re-

gardless of how many errors have occurred previously. This all-or-none

~1 property is particularly incompatible with the idea that correct re-

sponses are gradually strengthened in association with relevant aspects

of stimuli. Therefore, Bower and Trabasso's (1964) experimental results

which gave strong and surprising support that concept identification

performance is described well by the model in Panel A of Figure 1, pro-

duced an interesting twist in comparison between human and animal performance
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Figure 1. Finite stochastic models: (A) of concept identification,
and (B) of paired-associate memorizing.



in this task. The task called concept identification when human subjects

participate is called discrimination learning when the experiment is run

with laboratory animals. It was established that active selective

attention is an important feature of animal learning in the discrimina-

tion task, just as it is for humans (e.g., Lawrence, 1963). However,

the process of learning is apparently more complicated when a rat learns

a discrimination than when a person identifies a concept for use in

classifying stimuli. In learning by rats the selective process appar-

ently is modified in a gradual fashion, and the subjects do not respond

as systematically to the stimulus attributes that they attend do

(Lovejoy, 1968). Thus, in contrast to the earlier belief by some be-

haviorists that studies of animal conditioning would reveal simple

forms of principles that would appear in more complex form in human

learning, the opposite seems to have occurred in this case.

Another result involving a surprisingly simple model was Bower's

(1961) application of a two-state Markov model to paired-associate

memorizing. Combined with Rock's (1957) and Estes' (1960) more quali-

tative evidence, Bower's results provided support for the startling

idea that in the simplest case, learning of an association is an all-

or-none event, and thus should be viewed as a discrete transition

between an unlearned and a learned state. Evidence for incremental

learning was provided (e.g., Postman, 1963); however, in retrospect,

it seems reasonable to consider the all-or-none model as an ideal case,

perhaps analogous to the idea in physics of a frictionless gas. The

fact that all real experiments depart from the ideal model, to varying

degrees, does not invalidate the model as a useful and fundamentally

correct characterization (cf., Crowder, 1976).
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Further work on paired-associate memorizing led to a hypothesis

about the nature of the basic one-step process of paired-associate

memorizing, and the nature of the additional process that is required

when memorizing is significantly discrepant from the all-or-none model.

In this work, the slightly more complicated model graphed in Panel B

of Figure 1 turned out to be useful, especially in allowing estimates

of parameters that enabled judgments about the relative difficulty of

stages of learning in different experimental conditions. A considerable

body of evidence, much of which depends on use of the model in Panel B,

appears to support the idea that the two main stages of paired-associate

memorizing involve storage of relational units representing the pairs

and formation of a retrieval system, perhaps in the form of a network,

* that enables the subject to retrieve individual items on tests (Greeno,

James, DaPolito, & Polson, 1978). For an alternative interpretation

of some of these findings, see Postman and Underwood (1973).

Structure and processes of memory. Another elaboration of the basic

all-or-none model involved postulating a transient state corresponding

to an item's being held in short-term memory (Atkinson & Crothers, 1964;

Greeno, 1967). However, the major development of theories analyzing

components of the human information processing system have treated the

process in more detail. As a result of this work (e.g., Atkinson &

Shiffrin, 1968; Norman & Rumelhart, 1970) we are now aware of at least

three memory systems: short-term sensory storage, short-term memory,

and something less transient. I personally prefer the view graphed in

Figure 2 that there is an intermediate-term memory system often called

long-term memory in experimental applications and an organized system

of memory for concepts and factual information. The general picture
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that has become familiar is that information is received by a sensory

system that has a very large capacity, but a holding time on the order

of a fraction of a second. Information selected from that system is

held in short-term memory, which has a much smaller capacity, but

ordinarily holds items for a few seconds. If relationships can be

found to organize this information it is stored in intermediate-term

memory, in which case it will be held for a longer time--minutes or

hours. The information may become integrated as a part of the idi-

'1i  vidual's permanent structure of concepts and factual knowledge and thus

become a part of the person's store of semantic and factual knowledge.

Insert Figure 2 about here
.--.----.------------------- . .--.

Along with these ideas about memory structure, considerable addi-

tional understanding of processes of memorizing has also been developed.

Coding of information for memory was studied by numerous investigators

(Melton & Martin, 1972 ). Recall of items from lists was analyzed in

relation to rehearsal processes (Bernbach, 1969; Rundus & Atkinson,

1970), and the way in which rehearsal was carried out (Woodward, Bjork,&

Jong-eward, 1973). Processing that involves retrieval of word meanings was

found to provide a better reoresentation-for memory than-processing involving

more superficial features of the items (Craik & Tulving, 1972).

My purpose in rehearsing this set of familiar ideas is to contrast

it with the conceptualization we had as recently as 20 years ago. To

some extent, the discussions we now have about storing information in-

volve translation of earlier discussion into new terms. Storage of

information and learning of responses to stimuli are equivalent concepts

- . .... . .." . ... . .. . .._ 4 -. . . . . . rk l = I II
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Figure 2. Divisions of information-processing function in the
human memory system (from Greeno & Bjork, 1973).

A
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at same level of abstraction. However, there have been genuine substan-

current research. In the 1950's our discussion was in the terms of very

general variables, most of them external to the learner. More recent

- discussion has involved more detailed analyses of the process of storing

information in memory. For example, issues such as the following were

important in the 1950's: Is it important to present reinforcement or

knowledge of results immnediately, or does delayed feedback provide an

effective condition for learning? If new C-B associations are learned

with the same responses as earlier A-B associations, will there be

interference between those associations, presumably because of inter-

ference in the backward direction (B-A vs. B-C)? By 1970, we were also

asking somewhat more detailed questions, such as: Is information

maintained in short-term memory if a distracting task involves activity

in a different modality? and Does storage in long-term memory require

processing information meaningfully, rather than simple rehearsal that

maintains the information in short-term memory? The more detailed

analyses now available involving both processes and structural components

of memory shows an important dimension of the progress made during the

1960's in our understanding of human cognition.

In addition to substantive matters such as these, the development

of stochastic models of learning and memory included a significant

methodological advance. The gist of the development was a technology

for using data in more precise and detailed ways to test psychological

hypotheses. Statistical methods traditionally used by experimental

psychologists are designed to test the hypothesis that two groups are

the same, or that the difference between two groups is the same as the
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difference between two other groups.___ A majority of experiments

_have been designed to demonstrate the presence of an effect, so -

the result that supports a psychological hypothesis is one that falsifies

the null hypothesis. - However, with more detailed knowledge and theory .

about psychological processes, we can now formulatemore specific hy-

....p otheses that imply definite patterns of experimental effects that

should occur if the hypotheses are correct. Therefore, we need statisti-

cal methods that are designed to test whether the specific pattern of

findings can be rejected, rather than general methods that merely test

for the presence of experimental effects. Statistical methods for

evaluating goodness of fit of models based on specific psychological

hypotheses are now becoming quite commonplace. Such methods were

applied and developed substantially in relation to stochastic models

of learning (cf., Restle & Greeno, 1970).

Organization of Knowledge

Through most of the 1960's, most of us thought that we understood

the basic principles by which knowledge is organized. We believed that

knowledge of facts and concepts was a network of associations between

ideas, and that knowledge of how to do things was a set of connections

between stimuli and responses.

Conceptual and factual knowledge. Our conceptualization of the

organization of knowledge has developed considerably since about 1970.

The nature of knowledge of facts and concepts is represented in a variety

of theories that are all based on the concept of a schema. We have known

......since Bartlett's-(932) famous work on memory for stories that schemata

are critically important in cognitive functioning, but only recently we



have been able to specify the constituents of schemata in relatively

definite ways (e.g., Norman & Rumelhart, 1975; Schank & Abelson, 1977).

Several current__theories share the-view that schemata are data struc-

tures or procedures that are used to organizethe components of specific

.___ experience and to expand the representation of anexperience or message tol-

include components that were not specifically _contained inthe experience,

-but that_ are needed to make the representation coherent and_ complete in--

_-s ome important sense. For example,our knowledge of the meaning of a verb

that denotes an action includes the ability to form a relational struc-

ture that connects the agent of the action, its object, the instrument

used, and so on. The structure that is formed may also contain additional

information that is inferred. An example of a schema representing the

meaning of a verb is in Figure 3, taken from Gentner's (1975) analysis

of possession verbs. This schema functions in an understanding system

to process sentences such as, "Ida borrowed a tablecloth." The upper

part of Figure 3 shows the results of a basic case analysis in which

Ida is assigned as the agent of the action of borrowing, and the table-

cloth is assigned as the object. The lower part of the diagram shows

the results of expanding the schema into its definitional components

involving knowledge that the action was performed by Ida, this caused a

change in the possession of the tablecloth so that it came into Ida's

possession from someone else's, and that Ida has an obligation to return

the tablecloth to the person who had it before.

Insert Figure 3 about here
----------------------------
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Theories based on the idea of schemata have also been developed to

analyze the understanding of simple stories. In these analyses it is

postulated that we use knowledge about principles of motivation and

other psychological processes to fill in unstated connections so the

story makes sense. An example from the work of Mandler and Johnson

(1977) is in Table I and Figure 4. Table 1 presents the propositions

of a familiar story. Figure 4 shows an integrated structure of relations

among the propositions that is achieved in the process of understanding

the story. The structure shown here includes formal relations involved

in the story structure, such as the distinction between the setting of

the story and the description of events in the story and the distinc-

tions between the various parts of an episode--its beginning, development,

and conclusion. The structure also includes relationships based on

knowledge about individuals and things. It is understood that the

connection between the state of wanting the meat that is seen in the

water and the act of snapping at it is motivational, but the relation

between snapping at the reflection and having the meat fall into the

water is causal.

p Insert Table I and Figure 4 about here

Knowledge for solving problems. In addition to analyses of language

understanding such as these, we also have developed a considerably ex-

panded conceptualization of the knowledge involved in doing things.

Much of this theory has been developed in the analysis of problem solving,

and Newell and Simon's (1972) work provided most of the seminal ideas in

the recent theoretical developments. A salient feature of recent analyses
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Table 1

Dog Story (from Mandler & Johnson, 1977)

1 It happened that a dog had got a piece of meat

2 and was carrying it home in his mouth.

.23 Now on his way home he had to cross a plank lying across a stream.
4 As he crossed he looked down

5 and saw his own shadow reflected in the water beneath.

*16 Thinking it was another dog with another piece of meat,

7 he made up his mind to have that also.

8 So he made a snap at the shadow,

9 but as he opened his mouth the piece of meat fell out,

10 dropped into the water,

11 and was never seen again.
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of problem solving has been the inclusion of processes that set subgoals

*1 and adopt plans, thus representing problem-solving strategies and explain-

ing the organization of problem solvers' performance.

Knowledge for problem solving is frequently represented in the form

of a production system. An example is in Table 2, which shows one of

the strategies that Simon (1975) analyzed for solving the Tower of Hanoi

puzzle. There are three pegs and some number of doughnut-shaped disks,

graded in size. Initially the disks are on one of the pegs with the

diSks ordered insize starting with the largest on the bottom. The task _

is to move all the disks to another designated peg moving only one disk

at a time and never covering a smaller disk with a larger one. Each

component of Simon's model for solving the problem is a production,

consisting of a condition paired with an action. On each cycle of the

process, conditions are tested in order starting with P1. When one of

the condition tests is passed the action of that production is executed

and the system exits. For example, the initial values of State and Goal

are null. Therefore, on the first cycle none of the conditions of Pl-P5

are satisfied, so the default condition of P6 passes and the goal is set

to move the pyramid of disks found on the initial peg onto the designated

goal peg. On the second cycle State is still null so the first condition

that passess is in P5. This produces a test to see whether the goal can

be achieved by a simple move; the possible outcomes of this test are the

following: Can if the goal involves a disk that can be moved and no smaller

dis k on -th-e-dis1red-peg-; -Can' t-f amid tobe- moved has more than one

dis--or a--small--disk is-on--the desired-peg-Done if the-pryamid Vis. .

already on the desired peg; and Problem-solved if all the disks are

on the designated goal peg. The result of the test becomes the value
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of the State variable. Usually, the first test results in State having

the value Can't, so on the third cycle the production that fires is P4.

This has the action of setting a goal of moving a smaller pyramid.

When a small enough goal is set, the test results in Can and a move is

made (production P3). On the following cycle the test shows that the

=. goal is Done, and then the system returns to a goal involving a larger

disk (production P2).

Insert Table 2 about here

A slightly more complex formalism for representing knowledge for

performing actions is called a procedural network (Sacerdoti, 1977).

In a procedural network each action is associated with preconditions

that must be present for the action to be performed. Each action is

also associated with its consequences and with other actions that con-

stitute components of the action. In a production system each action is

associated only with its preconditions, and the coordination of actions

must occur because of the way in which the productions are written and

the sequence in which tests occur. The additional structure of a pro-

cedural network can be used by a planning mechanism that considers con-

sequences of actions in relation to preconditions of actions that will

have to be performed later. A procedural network also provides a basis

for analyzing the relations among actions that occur at different levels.

Figure 5 shows a diagrammatic representation of a procedure for sub-

tracting numbers, developed by Brown and Burton (1978). Each action is

associated with component actions that are performed as part of the more

global action. For example, the action called Subtract Column includes

a procedure for determining whether borrowing is needed, a procedure for

LA .-... i
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Table 2

Production System for Tower of Hanoi (from Simon, 1975)

*-Pl. State-= Problem-solved...Halt.4P2. State - Done.Gol=MvPyaik)A
.... Delete(STM). Goal - Move(Pyramid(k- 1),A)

P3. State = Can. Goal -Move(Pyramid(k),A)
.... Delete(STNI). Movc(k.P(k).A)

P4. State = Can't. Goal = Move(Pyramidk).AI
... DeeeSM. ol-Nove(Pyramid(k- 1),O(P(k).A))

P5. Goal = Nove(Pyranhid(k).A) ... Test(NlovekP(k).A))
77P6. else -*Goal M-Novc(Pyramid(n).Goaj-peg) ,*7*.
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borrowing, and a procedure in which the answer for the column is found.

Figure 5 is highly schematic; many tests for appropriateness of sub-

actions are required, but are not shown in the diagram. However,

Figure 5 is sufficient to illustrate the general idea of a procedural

representation, as well as the fact that apparently simple performances

such as subtraction turn out to be surprisingly complex when they are

analyzed in detail.

Insert Figure 5 about here

In my own recent research, I have been investigating tasks that seem

to involve both conceptual and procedural knowledge. One line of research

has involved investigating problem solving in geometry, where each step in

solving a problem involves an inference similar in kind to those that are

standard in the theory of language understanding. A model of geometry

problem solving that has been developed uses a representation of the

problem situation in the form of a semantic network. The procedures for

solving problems are in the form of a production system, modeled after

Anderson's (1976) ACT system. The process of problem solving is a pro-

cess of making semantic inferences. However, they are goal-directed

inferences, related to the problem-solving task, so the system combines

important features of problem solving with inferential processes in-

1volved in understanding. As an example, Panel A of Figure 6 shows a

simple geometry problem. Panel B shows some components of the initial

representation of the problem in the system; the measure of one angle is

given, and the goal is to find the measure of another angle. Panel C

shows a structure formed in the process of solving the problem. Note
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that the initial goal has been satisfied: A12 is linked to a measure of

1400 The structure also includes other properties and relations that

were generated in the process of reaching the solution, for example,

that Al and A6 are vertical angles and are therefore congruent. (Re-

search on geometry has been reported in Greeno, 1976, 1977, 1978.)

Anoter ineof-rseach- nvoles-tud-of-he-rocss-o-sovin

Insert Figure 6 about here

arithmetic word problems. In this work I am collaborating with Joan E.

Heller and Mary S. Riley. The word problems we are studying are essentiallyj

question-answering tasks. Some quantitative information is given, and

an inference is required to find the answer. An example of the kind

of problem we are studying is the following: "Joe has five apples;

Tom has three more apples than Joe. How many apples does Tom have?"

The inferential process required for these problems is specified in

arithmetic--the answer is found by adding 5 + 3 . However, the process

of solving the problem includes an important component of language under-

standing in which the problem solver comprehends the given information

and the question. The process of understanding is required in order to

select the appropriate arithmetic procedure for calculating or inferring

the answer.

*1 The research that we are conducting includes the development of a

model of the process of understanding word problems and selecting the

arithmetic operations to be performed. The understanding process is like

those generally included in theories of language processing. Sentences

found in text are translated into a cognitive representation that
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(A)a

b

pm n

Given al b, and m l n,measure of L p = 40' .

Find the measure of .q.

(B) 400 NU

MEAS I MEAS

Al

Figure 6

(A) a problem in geometry;
(B) initial representation of the problem (MEAS = measure; Al and A12

refer to angles);

(C) cognitive representation after solution, including other angles used
in the solution (CONG = congruent, SUPP = supplementary, VERT = verticalangles, CORR = corresponding angles, INTSAM = interior angles on the
same side of a transversal; Al, A6, A8, and A12 refer to angles.)
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(C)

• MEA

!Al SPA12

CONG CONG SUPP

Figure 6 (continued)

(A) a problem in geometry;

(B) initial representation of the problem (MEAS measure; Al and A12
refer to angles);

(C) cognitive representation after solution, including other angles used
in the solution (CONG = congruent, SUPP = supplementary, VERT = vertical
angles, CORR = corresponding angles, INTSAM = interior angles on the
same side of a transversal; Al, A6, A8, and Al2 refer to angles.)
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indicates the main relationships among the concepts mentioned in the

text. Our use of schemata is similar to other language-understanding

systems that have been developed, although the schemata in the system

are somewhat more abstract than those that have been studied in the

analysis of sentence and story understanding.

An example is in Figure 7, showing a schema that is used in under-

standing the most commuon kind of problem involving simple addition or

subtraction. This schema applies to a problem that describes a situation

involving a quantity, some event that changes the quantity by some amount,

and a quantity that results from the change. An example would be, "Tom

had five apples; Joe gave him some apples and now Tom has eight apples.

How many apples did Joe give him?" The understanding system determines

that the object involved is a set of apples in Tom's possession, and

the amount it has initially (the state labeled from) is five. The

amount involved after the change (the state labeled to) is eight. The

action has a direction of increase, and the amount involved in the action

is unknown. With this configuration of information and the question, the

system selects an operation of subtraction to find the answer.

Insert Figure 7 about here

The part of the model that has been developed has three general

schemata for solving simple addition and subtraction problems. In addi-

tion to the schema in Figure 7 involving an event that changes a quantity,

there are schemata for representing combinations of quantities and com-
parisons of quantities. These three semantic structures seem sufficient

to provide understanding of all the simple one-step addition and

----------------------A
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Figure 7. Schema for representing arithmetic problems in

which an event causes a change in quantity.
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subtraction problems that children are expected to be able to solve

(Heller & Greeno, Note 2), and we have obtained evidence that the se-

mantic structure of a problem is a relevant factor in determining the

difficulty of the problem (Riley & Greeno, Note 5).

These studies of geometry and arithmetic problem solving relate to

the general issue of the relation between understanding processes and

knowledge of problem solving procedures. There are other investigators

working on this general problem, of course. Hayes and Simon (1974) have

studied the process of understanding text that presents instructions for

solving problems. A number of investigators (de Kleer, Note 1; McDermott

& Larkin, 1978; Novak, Note 4; Simon & Simon, 1978) have studied the pro-

cess of solving physics problems, emphasizing the relation between knowl-

edge of formulas and understanding of general concepts and relationships.

Many of the important principles were included in Winograd's (1972)

system that understood instructions for changing positions of toy blocks.

These various projects all are promising for the prospect that current

work will lead to a considerable strengthening of our understanding of

relationships between processes involved in understanding language and

procedural knowledge that is involved in skilled performance.

An aside about methodology. An important part of the development of

recent theories that include representations of knowledge has been the

use of formalisms that have not been used commonly in psychology. These

include semantic networks, production systems, and procedural networks.

There are many different impressions about these new formalisms, espe-

cially since their use generally requires writing computer programs.

My impression about these formalisms, and the role of computer
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* I programming in psychological theorizing, is somewhat different from what

* I take to be a commonly-held view.

We are all aware that by choosing a formalism, one places some con-

straints on the form of a theory that will be developed using that for-

malism. Many people seem to have the impression that when theories are

* I formulated as computer programs, we are constrained to model psychological

processes as though human minds were digital computers. I believe that

this impression is seriously mistaken. In my opinion, the real con-

r straints that are imposed on theorizing are at a much more specific

level than the computer.

There are substantive constraints imposed by the choice of a for-

malism such as a semantic network or a production system. These con-

straints are analogous to those that were imposed on our theorizing

some years ago when we chose to represent learning processes as Markov

chains. There were alternative formalisms available then, as there are

now. Learning could be considered as a change in one or more continuous

variables, rather than as discrete transition in a finite state space.

If learning was assumed to involve continuous variables, then the for-

malism of differential equations provided a helpful framework for repre-

senting hypotheses. Many of us found the formalism of discrete stochastic

processes more helpful, however, and the models we formulated using that

framework seemed in better agreement with experimental data than those

that considered learning as continuously graded change. It does not seem

to be possible to falsify a formalism with empirical evidence. For ex-

ample, data that are explained naturally by a model written in the for-

malism of a Markov chain can also be explained by assuming changes in a

continuous variable (Restle, 1965). However, there are considerable
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differences in the degree to which different ideas can be expressed

naturally and conveniently in a formalism, and because of that the choice

of a formalism influences the development of theory. I have no doubt

that our use of semantic networks of the kind that are used in schema

theories of language understanding and our use of production systems in

the theory of problem solving are influencing the substantive concepts

that are included in our theoretical analyses of these processes.

!~ IAt one higher level of generality, when we develop a model in one

of these formalism, we use a prograrmming language. The current favorite

in the United States is LISP, because of its convenience for programming

procedures that operate on symbols, but other languages have been used

and still are used in some applications. I believe that the role of a

programming language in the development of a theory is analogous to the

role of a general mathematical system, such as algebra or calculus, in

the kinds of mathematical models that are more familiar psychology. A

programming language provides a notation for representing ideas, and it

provides some rather general methods for performing derivations. The

main reason for choosing a programming language is its convenience for

representing the kinds of ideas that are important in a theory. For

representing ideas about many psychological processes, LISP is much

more convenient than many other languages such as FORTRAN. This has

important practical consequences in the actual work of developing a

theory, but I believe it has very little impact on the substance of a

theory.

The computer itself is still another level removed from the sub-

stance of a theory. My impression is that the computer imposes no

substantive constraints on theory at all. This is not to say that the
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computer is unimportant. The computer enables a theorist to test whether

the assumptions of the theory fit together in a mutually consistent way,

and whether the assumptions really imply what the theorist believes

that they imply. Theories of language understanding and of problem

solving have too many component processes to permit a reliable judgment

of consistency and sufficiency for observed performance unless the

theory is written out in the form of a program and run on a computer.

Then the computer provides a way of keeping track of the various com-

ponents and their interactions.

It is not unusual for a scientific theory to be written out so

that derivations can be performed in an explicit way. Usually, the

device we use for making derivations is a piece of paper or a blackboard.

A good blackboard can be a great help in working out the details of a

theory, and so can a good computer. Sometimes the theoretical task at

hand requires a rather large blackboard, and the one in your office is

insufficient; this holds for computers as well. However, the way that

a blackboard works has no consequences at all for the kinds of assumptions

that we put into our theories, and I believe that the properties of

computer hardware are also completely irrelevant to the substantive

aspects of psychological theories that we formulate as computer programs.

Learning As Acquisition Of Knowledge

Psychologists who have emphasized investigation of the organization

of knowledge during the 1970's have focussed attention on the question of

what is learned, rather than how learning occurs. With fundamentally new

ideas about the outcome of the learning process, we should expect some

important new developments in the theory of learning. We now realize
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that someone who has learned the concepts of a language has acquired a

large collection of schematic knowledge structures that enable represen-

tation of relationships among a set of concepts when sentences using

those concepts arp understood. We also realize that someone who has

learned to solve a class of problems has acquired a set of cognitive

procedures including actions that change problem situations as well as

procedures for setting goals and for planning. The theory of learning

should include analyses of the processes by which knowledge struc-

tures of these various kinds are acquired. Learning must include

processes for organizing and integrating information and procedures, as

well as for storing them. We now realize that the learning system has

capabilities for holding information at various stages of memory. The

theory of learning should clarify the ways in which the various holding

capabilities enable the processing of information and procedures that

have been organized to varying degrees, permitting their further analysis

and synthesis for representation in memory.

The study of learning in this new context is in an early stage; most

of the ideas that are needed have yet to be worked out. However, the

beginnings of some analyses have been developed, and may provide a pre-

liminary indication of the shape that the new theory is likely to have.

It should be recognized that theories of language processing and

problem solving already include elementary forms of learning. When a

sentence is understood, new information is stored in memory, and the

fact or other information expressed by the sentence is learned. When

a problem is solved, new information is generated by the system and

stored in memory about the specific characteristics of the problem

situation and the specific goals and actions included in the solution
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of that problem. The information stored in memory when a story is under-

stood or when a problem is solved can be tested by asking questions;

question answering ba.)-ed on story understanding has been analyzed by

Lehnert (1978), and questions about problem solutions are answered by

Winograd's (1972) problem-solving system. The role of short-term memory

limitation has been worked out in a preliminary way by Kintsch and Vipond

(1979) for comprehension of text, and by Atwood and Polson (1976) for

solving simple problems.

The learning that occurs in understanding sentences or stories or

in solving specific problems is a form of assimilation, where new spe-

cific information is acquired by fitting it to existing general cognitive

structures. More significant theoretical problems arise when we consider

the modification of general schemata for understanding or general pro-

cedural knowledge used in problem solving.

Development of new structured schemata as complex as the one shown

in Figure 3 has not yet been analyzed. However, a theoretical analysis

of acquisition of schemata for classifying simple stimuli has been given

by Anderson, Kline, and Beasley (1979). Anderson et al's system learns

in a categorization task by adding production rules with conditions that

incorporate features of stimuli and actions that perform the category

responses. The productions are formed on the basis of plausible prin--

ciples of generalization and discrimination, productions are strengthened

and weakened on the basis of principles that are reasonable on general

grounds, and a knowledge structure results that is consistent with

prototypical representations of concepts.

An analysis of learning from experience in problem solving has been

given by Anzai and Simon (1979). This analysis showed how information
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about the problem situation stored during solutions can lead to the de-

velopment of new strategies in which performance is guided by more complex

and sophisticated goals. Klahr and Wallace (1976) also have analyzed

processes of acquisition of procedures in which operations used in quan-

titative judgments are acquired on the basis of invariant features that

are detected in experience in quantitative tasks.

The conception of learning involved in these analyses is quite dif-

ferent from the one that guided our research on learning during the 1950's

* and 1960's. The learning tasks that we gave to subjects involved rela-

tively unstructured materials because we felt that such tasks would

inform us about basic learning processes, with minimal contamination

of prior knowledge. If recent analyses are approximately correct, the

knowledge structures acquired even in relatively simple task situations

are very complex. It seems likely that to understand the acquisition

* of such structures, we need to know the ways in which complex cognitive

structures are modified and combined. Basic principles of learning may

be more easily discerned by observing interactions between new informa-

tion and existing knowledge structure than they have been in situations

where the effect of prior knowledge on learning has been minimized.

A pleasant prospect in the new study of learning that is emerging

now is the revival of strong connections between the psychology of learn-

ing and the practice of instruction in schools. Until about 1930, the

linkage between experimental psychology and instructional psychology

was reasonably strong; examples of experimental applications and

analyses in early mathematics instruction include Thorndike (1922),

Judd (1927), and Brownell (1928). However, with a few notable exceptions

such as Bruner (1966), Piaget (1970), Skinner (1958), and Suppes (e.g.,
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Suppes & Morningstar, 1972), serious analyses of tasks used in school in-

struction have not played an important part in the recent psychological

studies of learning.

Psychological study of school learning may or may not lead to help-

ful suggestions for improvement in the practice of instruction. However,

it seems quite certain that instructional tasks constitute a domain of

study and analysis that is potentially productive for psychological

theory. Learning tasks in the school curriculum are complex enough to

raise non-trivial theoretical questions. At the same time, the nature

of the concepts and skills to be acquired has been shaped by a process

of evolution in which materials that cannot be learned by most students

and methods of instruction that are patently unsuccessful have been

eliminated over the years, Cognitive psychologists can consider school

learning tasks as species of learning that have adapted to the constraints

of children's cognitive limitations and the normal abilities of teachers

and authors of instructional materials. A deep theoretical understanding

of the psychological processes involved in school learning could become

the keystone of a significant new psychological theory of learning.

'A
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